Add like
Add dislike
Add to saved papers

Threat gates visual aversion via theta activity in Tachykinergic neurons.

Animals must adapt sensory responses to an ever-changing environment for survival. Such sensory modulation is especially critical in a threatening situation, in which animals often promote aversive responses to, among others, visual stimuli. Recently, threatened Drosophila has been shown to exhibit a defensive internal state. Whether and how threatened Drosophila promotes visual aversion, however, remains elusive. Here we report that mechanical threats to Drosophila transiently gate aversion from an otherwise neutral visual object. We further identified the neuropeptide tachykinin, and a single cluster of neurons expressing it ("Tk-GAL42 ∩ Vglut neurons"), that are responsible for gating visual aversion. Calcium imaging analysis revealed that mechanical threats are encoded in Tk-GAL42 ∩ Vglut neurons as elevated activity. Remarkably, we also discovered that a visual object is encoded in Tk-GAL42 ∩ Vglut neurons as θ oscillation, which is causally linked to visual aversion. Our data reveal how a single cluster of neurons adapt organismal sensory response to a threatening situation through a neuropeptide and a combination of rate/temporal coding schemes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app