Add like
Add dislike
Add to saved papers

In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity.

Scientific Reports 2023 July 12
Recent reports on antibiotic resistance have highlighted the need to reduce the impact of this global health issue through urgent prevention and control. The World Health Organization currently considers antibiotic resistance as one of the most dangerous threats to global health. Therefore, Antimicrobial peptides (AMPs) are promising for the development of novel antibiotic molecules due to their high antimicrobial effects, non-inducing antimicrobial resistance (AMR) properties, and broad spectrum. Hence, in this study, we developed novel antimicrobial peptide/polymer conjugates to reduce the adverse effects of TN6 (RLLRLLLRLLR) peptide. We demonstrate how our constructs function in vitro in terms of antimicrobial activity, hemolytic activity, cytotoxicity, and protease resistance. Our findings show that our molecules are effective against different types of microorganisms such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, vancomycin-resistant Enteroccus faecium, and Candida albicans, which are known to be pathogenic and antibiotic-resistant. Our constructs generally showed low cytotoxicity relative to the peptide in HaCaT and 3T3 cells. Especially these structures are very successful in terms of hemotoxicity. In the bacteremia model with S. aureus, the naked peptide (TN6) was hemotoxic even at 1 µg/mL, while the hemotoxicity of the conjugates was considerably lower than the peptide. Remarkably in this model, the hemolytic activity of PepC-PEG-pepC conjugate decreased 15-fold from 2.36 to 31.12 µg/mL compared to the bacteria-free 60-min treatment. This is proof that in the case of bacteremia and sepsis, the conjugates specifically direct to bacterial cell membranes rather than red blood cells. In addition, the PepC-PEG-pepC conjugate is resistant to plasma proteases. Moreover, morphological and intracellular damage of the peptide/conjugates to Escherichia coli are demonstrated in SEM and TEM images. These results suggest our molecules can be considered potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in clinical cases such as bacteremia and sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app