Add like
Add dislike
Add to saved papers

Electronic Bifurcation: A New Perspective on Fe Bio-Utilization in Anaerobic Digestion of Lactate.

Anaerobic microorganisms use flavin/quinone-based electronic bifurcation (EB) to gain a survival advantage at the thermodynamic limits. However, the contribution of EB to microscopic energy and productivity in the anaerobic digestion (AD) system is unknown. This study demonstrates for the first time that under limited substrate conditions, Fe-driven EB in AD leads to a 40% increase in specific methane production and contributes to 25% ATP accumulation, by analyzing the concentration of EB enzymes such as Etf-Ldh, HdrA2 B2 C2 , and Fd, NADH and actual Gibbs free-energy changes. Differential pulse voltammetry and electron respiratory chain inhibition experiments detected that iron enhanced electron transport in EB by accelerating the activity of flavin, Fe-S clusters, and quinone groups. Other microbial and enzyme genes with EB potential closely related to iron transport have also been found in metagenomes. The potential of EB to accumulate energy and enhance productivity in AD systems was investigated, and metabolic pathways were proposed in the study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app