Add like
Add dislike
Add to saved papers

Motor unit tracking using blind source separation filters and waveform cross-correlations: reliability under physiological and pharmacological conditions.

Recent advancements in the analysis of high-density surface electromyography (HDsEMG) have enabled the identification, and tracking, of motor units (MUs) to study muscle activation. This study aimed to evaluate the reliability of MU tracking using two common methods: blind source separation filters and two-dimensional waveform cross-correlation. An experiment design was developed to assess physiological reliability, and reliability for a drug intervention known to reduce the firing rate of motoneurones (cyproheptadine). HDsEMG signals were recorded from tibialis anterior during isometric dorsiflexions to 10%, 30%, 50% and 70% of maximal voluntary contraction. MUs were matched within session (2 hr) using the filter method, and between sessions (7 days) via the waveform method. Both tracking methods demonstrated similar reliability during physiological conditions (e.g., MU discharge: filter ICC 10% of MVC = 0.76, to 70% of MVC = 0.86; waveform ICC: 10% of MVC = 0.78, to 70% of MVC = 0.91). Although reliability slightly reduced after the pharmacological intervention, there were no discernible differences in tracking performance (e.g., MU disc filter ICC: 10% of MVC = 0.73, to 70% of MVC = 0.75; DR waveform ICC: 10% of MVC = 0.84, to 70% of MVC = 0.85). The poorest reliability typically occurred at higher contraction intensities, which aligned with the greatest variability in MU characteristics. This study confirms that tracking method may not impact the interpretation of MU data, provided that an appropriate experiment design is employed. However, caution should be used when tracking MUs during higher intensity isometric contractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app