Add like
Add dislike
Add to saved papers

ACBiGRU-DAO: Attention Convolutional Bidirectional Gated Recurrent Unit-based Dynamic Arithmetic Optimization for Air Quality Prediction.

Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10 , carbon monoxide (CO) concentration, nitrogen dioxide (NO2 ) concentration, sulfur dioxide (SO2 ) concentration, and ozone (O3 ) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app