Add like
Add dislike
Add to saved papers

Time-Dependent Changes in the Bladder Muscle Metabolome After Traumatic Spinal Cord Injury in Rats Using Metabolomics.

PURPOSE: The main treatment options of neurogenic bladder remains catheterization and long-term oral medications. Metabolic interventions have shown good therapeutic results in many diseases. To date, no studies have characterized the metabolites of the detrusor muscle during neurogenic bladder. Using metabolomics, new muscle metabolomic signatures were identified to reveal the temporal metabolic profile of muscle during disease progression.

METHODS: We used 42 Sprague-Dawley rats (200±20 g, males) for T10 segmental spinal cord injury modeling and collected detrusor tissue and performed nontargeted metabolomics after sham surgery, 30-minute, 6-hour, 12-hour, 24-hour, 5-day, and 2-week postmodelling, to identify the dysregulated metabolic pathways and key metabolites.

RESULTS: By comparing mzCloud, mzVault, MassList, we identified a total of 1,271 metabolites and enriched a total of 12 metabolism-related pathways with significant differences (P<0.05) based on Kyoto Encyclopedia of Genes and Genomes analysis. Metabolites in several differential metabolic pathways such as ascorbate and aldarate metabolism, Steroid hormone biosynthesis, and carbon metabolism are altered in a regular manner before and after ridge shock.

CONCLUSION: Our study is the first time-based metabolomic study of rat forced urinary muscle after traumatic spinal cord injury, and we identified multiple differential metabolic pathways during injury that may improve long-term management strategies for neurogenic bladder and reduce costs in long-term treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app