Add like
Add dislike
Add to saved papers

Contribution of different strength determinants on distinct phases of Olympic rowing performance in adolescent athletes.

Aerobic metabolism dominates Olympic rowing, but research on the relative contribution of strength and power demands is limited. This study aimed to identify the contribution of different strength determinants for distinct phases of rowing ergometer performance. The cross-sectional analysis comprised of 14 rowing athletes (4 female, 10 male, age: 18.8 ± 3.0y, 16.9 ± 2.2y). Measurements included anthropometrics, maximal strength of leg press, trunk extension and flexion, mid-thigh pull (MTP) and handgrip strength, VO2 max, and a 2000 m time trial, where peak forces at the start, middle and end phase were assessed. Additionally, rate of force development (RFD) was assessed during the isometric leg press and MTP with intervals of 150, 350 ms and 150, 300 ms, respectively. Stepwise regression models for ergometer performance showed that the start phase was mainly explained by maximal trunk extension and RFD 300 ms of MTP (R2  = 0.91, p  < 0.001) and the middle section by VO2 max, maximal leg press strength and sitting height (R2  = 0.84, p  < 0.001). For the end phase, a best fit was observed for trunk flexion, RFD 350 ms of leg press, body height and sex (R2  = 0.97 p  < 0.001), whereas absolute VO2 max, trunk flexion and sex explained variance over the entire 2000 m time trial (R2  = 0.98, p  < 0.001). It appears that for the high acceleration in the start phase, force transmission through maximum strength for trunk extension is essential, while fast power production along the kinetic chain is also relevant. Additionally, the results support that maximal force complements the reliance on VO2 max. Further intervention studies are needed to refine training recommendations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app