Add like
Add dislike
Add to saved papers

Influence of Cupric (Cu 2+ ) Ions on the Iron Oxidation Mechanism by DNA-Binding Protein from Starved Cells (Dps) from Marinobacter nauticus .

Dps proteins (DNA-binding proteins from starved cells) are multifunctional stress defense proteins from the Ferritin family expressed in Prokarya during starvation and/or acute oxidative stress. Besides shielding bacterial DNA through binding and condensation, Dps proteins protect the cell from reactive oxygen species by oxidizing and storing ferrous ions within their cavity, using either hydrogen peroxide or molecular oxygen as the co-substrate, thus reducing the toxic effects of Fenton reactions. Interestingly, the interaction between Dps and transition metals (other than iron) is a known but relatively uncharacterized phenomenon. The impact of non-iron metals on the structure and function of Dps proteins is a current topic of research. This work focuses on the interaction between the Dps from Marinobacter nauticus (a marine facultative anaerobe bacterium capable of degrading petroleum hydrocarbons) and the cupric ion (Cu2+ ), one of the transition metals of greater biological relevance. Results obtained using electron paramagnetic resonance (EPR), Mössbauer and UV/Visible spectroscopies revealed that Cu2+ ions bind to specific binding sites in Dps, exerting a rate-enhancing effect on the ferroxidation reaction in the presence of molecular oxygen and directly oxidizing ferrous ions when no other co-substrate is present, in a yet uncharacterized redox reaction. This prompts additional research on the catalytic properties of Dps proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app