Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

Impact of SGLT2 inhibitors on the mechanisms of myocardial dysfunction in type 2 diabetes: A prospective non-randomized observational study in patients with type 2 diabetes mellitus without overt heart disease.

AIMS: This prospective observational study evaluated the possible mechanisms of action of SGLT2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) without overt heart disease.

METHODS: The study was designed to verify whether SGLT2i impact biomarkers of: myocardial stress-NT-proBNP, inflammation-high sensitivity C-reactive protein, oxidative stress -myeloperoxidase, functional and structural echocardiographic parameters, in patients with T2DM on metformin (heart failure stages A and B) who needed treatment intensification with a second antidiabetic agent. The patients were divided in two groups - the ones planned to receive SGLT2i or DPP-4 inhibitor (except saxagliptin). At baseline, and after six months of therapy, 64 patients underwent blood analysis, physical and echocardiography examination.

RESULTS: There were no significant differences between the two groups in terms of biomarkers of myocyte and oxidative stress, inflammation and blood pressure. Body mass index, triglycerides, aspartate aminotransferase, uric acid, E/E', deceleration time and systolic pressure in the pulmonary artery significantly decreased, while stroke volume, indexed stroke volume, high-density lipoprotein, hematocrit and hemoglobin significantly increased in the group on SGLT2i.

CONCLUSIONS: According to the results, SGLT2i mechanisms of action comprise rapid changes in body composition and metabolic parameters, reduced cardiac load and improvement in diastolic and systolic parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app