Add like
Add dislike
Add to saved papers

Degraded frozen soil and weakened frost heave in China due to climate warming.

Frost heave hazard is the uneven uplift of the ground surface due to the freezing of water and the expansion of ice bodies in soil, especially in seasonally frozen soil. First, this study quantified temporal and spatial variations of frozen soil, the active layer and frost heave in China in the 2010s. Subsequently, the study predicted the changes in the frozen soil, active layer, and frost heave for the 2030s and 2050s under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate scenarios. The permafrost will have degraded to seasonally frozen soil, and the seasonally frozen soil will have a reduced depth or even become non-frozen. By the 2050s, the area of permafrost and seasonally frozen soil will have by 17.6-59.2 % and 4.8-13.5 %, respectively. There is a 19.7-37.2 % reduction in area for seasonally frozen soil when the maximum depth of the seasonally freezing layer (MDSF) < 1.0 m, 8.8-18.5 % when 2.0 < MDSF <3.0 m, and an increase up to 13 % when 1.0 < MDSF <2.0 m. The area with a frost heaving <1.5 cm, 1.5-3.0 cm, 3.0-5.0 cm will have been reduced by 16.6-27.2 %, 18.0-24.4 %, and -8.0-17.1 % in the 2050s, respectively. Areas where permafrost degrades to seasonally frozen soil require attention when managing frost heave hazards. This study will help guide engineering and environmental practices in cold regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app