Add like
Add dislike
Add to saved papers

Submillimeter lung MRI at 0.55 T using balanced steady-state free precession with half-radial dual-echo readout (bSTAR).

PURPOSE: To demonstrate the feasibility of high-resolution morphologic lung MRI at 0.55 T using a free-breathing balanced steady-state free precession half-radial dual-echo imaging technique (bSTAR).

METHODS: Self-gated free-breathing bSTAR (TE1 /TE2 /TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR-scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k-space over multiple breathing cycles. WASP uses short-duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory-resolved images were reconstructed off-line using compressed sensing and retrospective self-gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings.

RESULTS: The technique provided artifact-free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off-resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively.

CONCLUSION: This study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app