Add like
Add dislike
Add to saved papers

Control of the injection velocity of embolic agents in embolization treatment.

BACKGROUND: Embolization is a common treatment method for tumor-targeting, anti-organ hyper-function, and hemostasis. However, the injection of embolic agents largely depends on the experiences of doctors, and doctors need to work in an X-ray environment that hurts their health. Even for a well-trained doctor, complications such as ectopic embolism caused by excessive embolic agents are always inevitable.

RESULTS: This paper established a flow control curve model for embolic injection based on local arterial pressure. The end-vessel network was simplified as a porous media. The hemodynamic changes at different injection velocities and embolization degrees were simulated and analyzed. Sponge, a typical porous medium, was used to simulate the blocking and accumulation of embolic agents by capillary networks in the in vitro experimental platform.

CONCLUSIONS: The simulation and experimental results show that the local arterial pressure is closely related to the critical injection velocity of the embolic agent reflux at a certain degree of embolization. The feasibility of this method for an automatic embolic injection system is discussed. It is concluded that the model of the flow control curve of embolic injection can effectively reduce the risk of ectopic embolism and shorten the time of embolic injection. The clinical application of this model is of great value in reducing radiation exposure and improving the success rate of interventional embolization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app