Add like
Add dislike
Add to saved papers

Cadmium-induced pyroptosis is mediated by PERK/TXNIP/NLRP3 signaling in SH-SY5Y cells.

Cadmium (Cd) is a hypertoxic heavy metal that may be exposed to environmental pollutants by humans and animals. It can lead to cognitive disfunction, and is linked to neurodegenerative diseases. Cadmium reportedly can induce endoplasmic reticulum (ER) stress, but few studies have concentrated on it in nerve cells, and the connection between ER stress and neuroinflammation. In this study, in vitro experiments on SH-SY5Y neuroblastoma cells were carried out. We aimed at exploring whether Cd attributed to the cell pyroptosis and the role of PERK in promoting this form of cell damage which can induce strong inflammatory responses. Our results demonstrated that CdCl2 treatment induced excess reactive oxygen species (ROS) production, caused significant modifications in the expression of PERK and increased TXNIP, NLRP3, IL-1β, IL-18, and caspase1 in SH-SY5Y cells. In addition, scavenging ROS with N-acetylcysteine or inhibiting the expression of PERK by using GSK2606414, rescued the SH-SY5Y cells from cadmium-induced pyroptosis. In conclusion, the results suggest that Cd induces pyroptotic death of SH-SY5Y cells through ER stress, and this may be the potential mechanism of Cd incurring neurological diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app