Add like
Add dislike
Add to saved papers

Mulching vs. organic soil amendment: Effects on adsorption-desorption of herbicides.

Mulching and organic soil amendment are two agricultural practices that are being increasingly used to preserve soil from degradation, although they may modify the fate of herbicides when applied in soils subjected to these practices. This study has set out to compare the impact of both agricultural practices on the adsorption-desorption behaviour of the herbicides S-metolachlor (SMOC), foramsulfuron (FORAM), and thiencarbazone-methyl (TCM) involving winter wheat mulch residues at different stages of decomposition and particle size, and unamended soils or those amended with mulch. The Freundlich Kf adsorption constants of the three herbicides by mulches, and unamended and amended soils ranged between 1.34 and 65.8 (SMOC), 0-34.3 (FORAM), and 0.01-1.10 (TCM). The adsorption of the three compounds was significantly higher in mulches than in soils (unamended and amended). The adsorption of SMOC and FORAM increased significantly with mulch decomposition, with this positive impact also being observed on the adsorption of FORAM and TCM after mulch milling. Simple and multiple correlations between mulches, soils, and herbicide properties, and adsorption-desorption constants (Kf , Kd , Kfd ) reflected the organic carbon (OC) content and/or dissolved organic carbon (DOC) content of the adsorbents as main variables controlling the adsorption and/or desorption of each herbicide. The statistic R2 revealed that >61 % of the variability in the adsorption-desorption constants could be explained by jointly considering the OC of mulches and soils and the hydrophobicity (for Kf ) or water solubility of herbicides (for Kd or Kfd ). The same trend observed for Kfd desorption constants as for Kf adsorption ones resulted in higher percentages of herbicide remaining adsorbed after desorption in amended soils (33 %-41 % of SMOC, 0 %-15 % of FORAM, and 2 %-17 % of TCM) than in mulches (< 10 %). The results reveal a higher efficiency of organic soil amendment than mulching as an agricultural practice for immobilising the herbicides studied when winter wheat mulch residues are used as a common adsorbent, and as a better strategy for avoiding groundwater contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app