Add like
Add dislike
Add to saved papers

Comparative transcriptomic analysis reveals the underlying molecular mechanism in high-fat diet-induced islet dysfunction.

Bioscience Reports 2023 June 10
Obesity, characterized by accumulation of adipose, is usually accompanied by hyperlipidemia and abnormal glucose metabolism, which destroys the function and structure of islet β cells. However, the exact mechanism of islet deterioration caused by obesity has not yet been fully elucidated. Here, we fed C57BL/6 mice with a high-fat diet (HFD) for 2 (2M group) and 6 months (6M group) to construct obesity mouse models. Then, RNA-based sequencing was used to identify the molecular mechanisms in HFD-induced islet dysfunction.  Compared to the control diet, a total of 262 and 428 differentially expressed genes (DEGs) were identified from islets of the 2M and 6M groups, respectively. GO and KEGG enrichment analysis revealed that the DEGs up-regulated in both the 2M and 6M groups are mainly enriched in response to endoplasmic reticulum stress and the pancreatic secretion pathway. DEGs down-regulated in both the 2M and 6M groups are mainly enriched in the neuronal cell body and protein digestion and absorption pathway. Notably, along with the HFD feeding, mRNA expression of islet cell markers was significantly down-regulated, such as Ins1, Pdx1, MafA (β cell), Gcg, Arx (α cell), Sst (δcell), and Ppy (PP cell). In contrast, mRNA expression of acinar cell markers was remarkably up-regulated, such as Amy1, Prss2, and Pnlip. Besides, a large number of collagen genes were down-regulated, such as Col1a1, Col6a6, and Col9a2. Overall, our study provides a full-scale DEG map regarding HFD-induced islet dysfunction, which was helpful to understand the underlying molecular mechanism of islet deterioration further.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app