Add like
Add dislike
Add to saved papers

Multimodality MRI synchronous construction based deep learning framework for MRI-guided radiotherapy synthetic CT generation.

Synthesizing computed tomography (CT) images from magnetic resonance imaging (MRI) data can provide the necessary electron density information for accurate dose calculation in the treatment planning of MRI-guided radiation therapy (MRIgRT). Inputting multimodality MRI data can provide sufficient information for accurate CT synthesis: however, obtaining the necessary number of MRI modalities is clinically expensive and time-consuming. In this study, we propose a multimodality MRI synchronous construction based deep learning framework from a single T1 -weight (T1 ) image for MRIgRT synthetic CT (sCT) image generation. The network is mainly based on a generative adversarial network with sequential subtasks of intermediately generating synthetic MRIs and jointly generating the sCT image from the single T1 MRI. It contains a multitask generator and a multibranch discriminator, where the generator consists of a shared encoder and a splitted multibranch decoder. Specific attention modules are designed within the generator for feasible high-dimensional feature representation and fusion. Fifty patients with nasopharyngeal carcinoma who had undergone radiotherapy and had CT and sufficient MRI modalities scanned (5550 image slices for each modality) were used in the experiment. Results showed that our proposed network outperforms state-of-the-art sCT generation methods well with the least MAE, NRMSE, and comparable PSNR and SSIM index measure. Our proposed network exhibits comparable or even superior performance than the multimodality MRI-based generation method although it only takes a single T1 MRI image as input, thereby providing a more effective and economic solution for the laborious and high-cost generation of sCT images in clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app