Add like
Add dislike
Add to saved papers

Discovery of the allosteric inhibitor from actinomyces metabolites to target EGFR CSTMLR mutant protein: molecular modeling and free energy approach.

Scientific Reports 2023 June 2
EGFR (epidermal growth factor receptor), a surface protein on the cell, belongs to the tyrosine kinase family, responsible for cell growth and proliferation. Overexpression or mutation in the EGFR gene leads to various types of cancer, i.e., non-small cell lung cancer, breast, and pancreatic cancer. Bioactive molecules identified in this genre were also an essential source of encouragement for researchers who accomplished the design and synthesis of novel compounds with anticancer properties. World Health Organization (WHO) report states that antibiotic resistance is one of the most severe risks to global well-being, food safety, and development. The world needs to take steps to lessen this danger, such as developing new antibiotics and regulating their use. In this study, 6524 compounds derived from Streptomyces sp. were subjected to drug-likeness filters, molecular docking, and molecular dynamic simulation for 1000 ns to find new triple mutant EGFRCSTMLR (EGFR-L858R/T790M/C797S) inhibitors. Docking outcomes revealed that five compounds showed better binding affinity (- 9.074 to - 9.3 kcal/mol) than both reference drug CH7233163 (- 6.11 kcal/mol) and co-crystallized ligand Osimertinib (- 8.07 kcal/mol). Further, molecular dynamic simulation confirmed that ligand C_42 exhibited the best interaction at the active site of EGFR protein and comprised a better average radius of gyration (3.87 Å) and average SASA (Solvent Accessible Surface Area) (82.91 Å2) value than co-crystallized ligand (4.49 Å, 222.38 Å2). Additionally, its average RMSD (Root Mean Square Deviation) (3.25 Å) and RMSF (Root Mean Square Fluctuation) (1.54 Å) values were highly similar to co-crystallized ligand (3.07 Å, 1.54 Å). Compared to the reference ligand, it also demonstrated conserved H-bond interactions with the residues MET_793 and GLN_791 with strong interaction probability. In conclusion, we have found a potential drug with no violation of the rule of three, Lipinski's rule of five, and 26 other vital parameters having great potential in medicinal and pharmaceutical industries applications and can overcome synthetic drug issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app