Add like
Add dislike
Add to saved papers

Resveratrol Attenuates Chronic Unpredictable Mild Stress-Induced Alterations in the SIRT1/PGC1α/SIRT3 Pathway and Associated Mitochondrial Dysfunction in Mice.

Environmental challenges, specifically chronic stress, have long been associated with neuropsychiatric disorders, including anxiety and depression. Sirtuin-1 (SIRT1) is a NAD+ -dependent deacetylase that is widely distributed in the cortex and is involved in stress responses and neuropsychiatric disorders. Nevertheless, how chronic stress modulates the SIRT1 pathway and associated signaling remains unclear. In this study, we first explored the impact of chronic unpredictable mild stress (CUMS) on the SIRT1/PGC1α/SIRT3 pathway, on GABAergic mechanisms, and on mitophagy, autophagy and apoptosis in mice. We also asked whether activation of SIRT1 by resveratrol (RSV) can attenuate CUMS-induced molecular and behavioral alterations. Two-month-old C57/BL6J mice were subjected to three weeks of CUMS and one week of RSV treatment (30 mg/kg; i.p.) during the third week of CUMS. CUMS caused downregulation of the SIRT1/PGC1α/SIRT3 pathway leading to impaired mitochondrial morphology and function. CUMS also resulted in a reduction in numbers of parvalbumin-positive interneurons and increased oxidative stress leading to reduced expression of autophagy- and mitophagy-related proteins. Strikingly, activation of SIRT1 by RSV ameliorated expression of SIRT1/PGC1α/SIRT3, and also improved mitochondrial function, GABAergic mechanisms, mitophagy, autophagy and apoptosis. RSV also rescued CUMS-induced anxiety-like and depressive-like behavior in mice. Our results raise the compelling possibility that RSV treatment might be a viable therapeutic method of blocking stress-induced behavioral alterations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app