Add like
Add dislike
Add to saved papers

Development of Hyphenated Techniques and Network Identification Approaches for Biotransformational Evaluation of Promising Antitubercular N-pyrrolyl hydrazide-hydrazone in Isolated Rat Hepatocytes.

Novel, rapid and precise RP-HPLC-DAD method was developed, validated and successfully applied for determination of metabolic changes of ethyl 5-(4-bromophenyl)-1-(3-(2-(2-hydroxybenzylidene)hydrazinyl)-3-oxopropyl)-2-methyl-1 H -pyrrole-3-carboxylate ( 12b ) in isolated rat hepatocytes. The analytes were detected by a simple DAD detector at 279 nm wavelength. A single-step extraction method was implemented to enable fast purification and extraction from cellular culture, resulting in a complete recovery. Thereafter, the method was adequately transferred to a LC-MS system for identification of unknown products. Additionally, network metabolism evaluation was performed to predict the structures of major metabolites with their isotope mass through BioTransformer 3.0. The data from the LC-MS analysis and the online server were compared for comprehensive identification. The results indicated formation of four metabolic products, obtained through processes of hydrolysis ( 12 and b ), hydroxylation in the structure 12b ( M1 ) and O-dealkylation ( M2 ).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app