Add like
Add dislike
Add to saved papers

Increased expression of ELOVL7 contributes to production of inflammatory cytokines in THP-1 cell-derived M1-like macrophages.

The elevation of intracellular very long-chain fatty acids (VLCFAs) augments pro-inflammatory activity of macrophages. VLCFAs are considered to function as regulators in macrophage inflammatory responses; however, the precise mechanism of regulating the production of VLCFAs is unclear. In this study, we focused on elongation of the very‑long‑chain fatty acid protein (ELOVL) family, rate-determining enzymes for VLCFA synthesis, in macrophages. ELOVL7 mRNA was upregulated in human monocytic THP-1 cell-derived M1-like macrophages. Metascape analysis using the RNA-seq data set showed the involvement of NF-κB and STAT1 in transcriptional regulation of ELOVL7 highly correlated genes. Gene ontology (GO) enrichment analysis suggested that ELOVL7 highly correlated genes were closely associated with multiple pro-inflammatory responses, including response to virus and positive regulation of NF-κB signaling. Consistent with RNA-seq analysis, the NF-κB inhibitor BAY11-7082, but not the STAT1 inhibitor fludarabine, canceled ELOVL7 upregulation in M1-like macrophages. ELOVL7 knockdown decreased interleukin (IL)-6 and IL-12/IL-23 p40 production. Moreover, RNA-seq analysis of plasmacytoid dendritic cells (pDCs) revealed that ELOVL7 was upregulated in pDCs treated with TLR7 and TLR9 agonists. In conclusion, we propose that ELOVL7 is a novel pro-inflammatory gene that is upregulated by inflammatory stimuli, and regulates M1-like macrophage and pDC functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app