Add like
Add dislike
Add to saved papers

Wastewater treatment by high density algal flocs for nutrient removal and biomass production.

UNLABELLED: The present work investigated the efficiency of algal flocs biomass for the treatment of primary and secondary effluent in static and mixing conditions under different hydraulic retention time (HRT). Primary effluent fed cultures created a high-density biomass of 2.8 and 3.8 g L-1 under static and mixing conditions, respectively. Secondary effluent was more effective in order to create even higher density biomass of 7.8 and 6 g L-1 under static and mixing conditions, respectively. The algal floc biomass developed was quite effective for organic matter and nutrient removal. Primary effluent fed cultures seemed to be more efficient for chemical oxygen demand (COD) and ammonia nitrogen removal, while secondary effluent fed cultures for nitrates removal. At an HRT of 8 days using primary effluent, the removal of COD, ammonia nitrogen and total phosphorus was 86.2, 100 and 97.4%, respectively. The cultures fed with secondary effluent, even at low HRT of 1.2 days, achieved removals of 88.4, 77.5, 100 and 98.6% for COD, nitrates, ammonia, and total phosphorus, respectively.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10811-023-02931-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app