Add like
Add dislike
Add to saved papers

Mir-4699 promotes the osteogenic differentiation of mesenchymal stem cells.

INTRODUCTION: Mesenchymal stem cells (MSCs) are drawing considerable attention in the field of regenerative medicine due to their differentiation capabilities. The miRNAs are among the most important epigenetic regulators of MSC differentiation. Our previous study identified miR-4699 as a direct suppressor of the DKK1 and TNSF11 gene expression. However, the precise osteogenic-related phenotype or mechanism caused by miR-4699 change has yet to be dealt with in depth.

MATERIAL AND METHODS: In the present study, miR-4699 mimics were transfected into human Adipose tissue-derived mesenchymal stem cells (hAd-MSCs) and osteoblast marker gene expression (RUNX2, ALP, and OCN), was analyzed to investigate whether miR-4699 promotes osteoblast differentiation of hAd-MSCs through targeting the DKK-1 and TNFSF11. We further examined and compared the effects of recombinant human BMP2 with miR-4699 on cell differentiation. In addition to quantitative PCR, analysis of alkaline phosphatase activity, calcium content assay, and Alizarin red staining were used to explore osteogenic differentiation. To evaluate the effect of miR-4699 on its target gene (on protein level) we utilized the western blotting technique.

RESULTS: The overexpression of miR-4699 in hAd-MSCs resulted in the stimulation of alkaline phosphatase activity, osteoblast mineralization, and the expression of RUNX2, ALP, and OCN osteoblast marker genes.

CONCLUSION: Our findings indicated that miR-4699 supported and synergized the BMP2-induced osteoblast differentiation of mesenchymal stem cells. We suggest, thereof, the utilization of hsa-miR-4699 for further in vivo experimental investigation to reveal the potential therapeutic impact of regenerative medicine for different types of bone defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app