Add like
Add dislike
Add to saved papers

In Vitro Screening for Probiotic Properties of Lactobacillus and Bifidobacterium Strains in Assays Relevant for Non-Alcoholic Fatty Liver Disease Prevention.

Nutrients 2023 May 19
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that poses health challenges worldwide and is expected to continue to rise dramatically. NAFLD is associated with metabolic syndrome, type 2 diabetes mellitus, and impaired gut health. Increased gut permeability, caused by disturbance of tight junction proteins, allows passage of damaging microbial components that, upon reaching the liver, have been proposed to trigger the release of inflammatory cytokines and generate cellular stress. A growing body of research has suggested the utilization of targeted probiotic supplements as a preventive therapy to improve gut barrier function and tight junctions. Furthermore, specific microbial interactions and metabolites induce the secretion of hormones such as GLP-1, resulting in beneficial effects on liver health. To increase the likelihood of finding beneficial probiotic strains, we set up a novel screening platform consisting of multiple in vitro and ex vivo assays for the screening of 42 bacterial strains. Analysis of transepithelial electrical resistance response via co-incubation of the 42 bacterial strains with human colonic cells (Caco-2) revealed improved barrier integrity. Then, strain-individual metabolome profiling was performed revealing species-specific clusters. GLP-1 secretion assay with intestinal secretin tumor cell line (STC-1) found at least seven of the strains tested capable of enhancing GLP-1 secretion in vitro. Gene expression profiling in human biopsy-derived intestinal organoids was performed using next generation sequencing transcriptomics post bacterial co-incubation. Here, different degrees of immunomodulation by the increase in certain cytokine and chemokine transcripts were found. Treatment of mouse primary hepatocytes with selected highly produced bacterial metabolites revealed that indole metabolites robustly inhibited de novo lipogenesis. Collectively, through our comprehensive bacterial screening pipeline, not previously ascribed strains from both Lactobacillus and Bifidobacterium genera were proposed as potential probiotics based on their ability to increase epithelial barrier integrity and immunity, promote GLP-1 secretion, and produce metabolites relevant to liver health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app