Add like
Add dislike
Add to saved papers

Expression of Transposable Elements in the Brain of the Drosophila melanogaster Model for Fragile X Syndrome.

Genes 2023 May 10
Fragile X syndrome is a neuro-developmental disease affecting intellectual abilities and social interactions. Drosophila melanogaster represents a consolidated model to study neuronal pathways underlying this syndrome, especially because the model recapitulates complex behavioural phenotypes. Drosophila Fragile X protein, or FMRP, is required for a normal neuronal structure and for correct synaptic differentiation in both the peripheral and central nervous systems, as well as for synaptic connectivity during development of the neuronal circuits. At the molecular level, FMRP has a crucial role in RNA homeostasis, including a role in transposon RNA regulation in the gonads of D. m. Transposons are repetitive sequences regulated at both the transcriptional and post-transcriptional levels to avoid genomic instability. De-regulation of transposons in the brain in response to chromatin relaxation has previously been related to neurodegenerative events in Drosophila models. Here, we demonstrate for the first time that FMRP is required for transposon silencing in larval and adult brains of Drosophila "loss of function" dFmr1 mutants. This study highlights that flies kept in isolation, defined as asocial conditions, experience activation of transposable elements. In all, these results suggest a role for transposons in the pathogenesis of certain neurological alterations in Fragile X as well as in abnormal social behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app