Add like
Add dislike
Add to saved papers

Glutathione Depleting a Chemoselective Novel Pro-oxidant Nano Metal-Organic Framework Induced G2/M Arrest and ROS-Mediated Apoptotic Cell Death in a Human Triple-Negative Breast Cancer Cell Line.

The progression of a new class of compounds to inhibit the uncontrolled proliferation of carcinoma cells has become one of the most powerful weapons to combat "cancer". To this end, a new Mn(II)-based metal-organic framework, namely, [{Mn(5N3 -IPA)(3-pmh)}(H2 O)]α (5N3 H2 -IPA = 5-azidoisophthalic acid and 3-pmh = (3-pyridylmethylene)hydrazone), has been synthesized adopting a mixed ligand approach and exploited as a successful anticancer agent via systematic in vitro and in vivo studies. Single-crystal X-ray diffraction analyses depict that MOF 1 exhibits a 2D pillar-layer structure consisting of water molecules in each 2D void space. Due to the insolubility of the as-synthesized MOF 1 , a green hand grinding methodology has been adopted to scale down the particle size to the nanoregime keeping its structural integrity intact. The nanoscale metal-organic framework ( NMOF 1 ) adopts a discrete spherical morphology as affirmed by scanning electron microscopic analysis. The photoluminescence studies revealed that NMOF 1 is highly luminescent, enhancing its biomedical proficiency. Initially, the affinity of the synthesized NMOF 1 for GSH-reduced has been evaluated by various physicochemical techniques. NMOF 1 constrains the proliferation of cancer cells in vitro by inducing G2/M seizure and accordingly leads to apoptotic cell death. More significantly, compared to cancer cells, NMOF 1 exhibits less cytotoxicity against normal cells. It has been demonstrated that NMOF 1 interacts with GSH, causing a drop in cellular GSH levels and the production of intercellular ROS. It is quite intriguing that we discovered that NMOF 1 -mediated ROS generation aids in significantly modifying the mitochondrial redox status, which is a crucial factor in apoptosis. According to mechanistic research, NMOF 1 increases the production of proapoptotic proteins and lowers the expression of antiapoptotic proteins, which significantly aids in activating caspase 3 and the subsequent cleavage of PARP1 and cell death via intrinsic apoptotic pathways. Finally, an in vivo investigation using immuno-competent syngeneic mice demonstrates that NMOF 1 can stop tumor growth without causing adverse side effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app