Add like
Add dislike
Add to saved papers

Physiological responses of plants to in vivo X-ray damage from X-ray fluorescence measurements: insights from anatomical, elemental, histochemical, and ultrastructural analyses.

X-ray fluorescence spectroscopy (XRF) is a powerful technique for the in vivo assessment of plant tissues. However, the potential X-ray exposure damages might affect the structure and elemental composition of living plant tissues leading to artefacts in the recorded data. Herein, we exposed in vivo soybean (Glycine max (L.) Merrill) leaves to several X-ray doses through a polychromatic benchtop microprobe X-ray fluorescence spectrometer, modulating the photon flux density by adjusting either the beam size, current or exposure time. Changes in the irradiated plant tissues' structure, ultrastructure and physiology were investigated through light and transmission electron microscopy (TEM). Depending X-ray exposure dose, decreased K and X-ray scattering intensities and increased Ca, P, and Mn signals on soybean leaves were recorded. Anatomical analysis indicated the necrosis of epidermal and mesophyll cells on the irradiated spots, where TEM images revealed the collapse of cytoplasm and cell wall breaking. Furthermore, the histochemical analysis detected the production of reactive oxygen species and the inhibition of chlorophyll autofluorescence in these areas. Under certain X-ray exposure conditions, e.g., high photon flux density and long exposure time, XRF measurements may affect the soybean leaves structures, elemental composition, and cellular ultrastructure, and induce programmed cell death (PCD). Our characterisation shed light on the plant's responses to the X-ray-induced radiation damage and might help to establish proper X-ray radiation limits and novel strategies for in vivo benchtop-XRF analysis of vegetal materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app