Add like
Add dislike
Add to saved papers

Galactosylated hydroxyl-polyamidoamine dendrimer targets hepatocytes and improves therapeutic outcomes in a severe model of acetaminophen poisoning-induced liver failure.

Toxicity to hepatocytes caused by various insults including drugs is a common cause of chronic liver failure requiring transplantation. Targeting therapeutics specifically to hepatocytes is often a challenge since they are relatively nonendocytosing unlike the highly phagocytic Kupffer cells in the liver. Approaches that enable targeted intracellular delivery of therapeutics to hepatocytes have significant promise in addressing liver disorders. We synthesized a galactose-conjugated hydroxyl polyamidoamine dendrimer (D4-Gal) that targets hepatocytes efficiently through the asialoglycoprotein receptors in healthy mice and in a mouse model of acetaminophen (APAP)-induced liver failure. D4-Gal localized specifically in hepatocytes and showed significantly better targeting when compared with the non-Gal functionalized hydroxyl dendrimer. The therapeutic potential of D4-Gal conjugated to N- acetyl cysteine (NAC) was tested in a mouse model of APAP-induced liver failure. A single intravenous dose of a conjugate of D4-Gal and NAC (Gal-d-NAC) improved survival in APAP mice, decreased cellular oxidative injury and areas of necrosis in the liver, even when administered at the delayed time point of 8 h after APAP exposure. Overdose of APAP is the most common cause of acute hepatic injury and liver transplant need in the United States, and is treated with large doses of NAC administered rapidly within 8 h of overdose leading to systemic side effects and poor tolerance. NAC is not effective when treatment is delayed. Our results suggest that D4-Gal is effective in targeting and delivering therapies to hepatocytes and Gal-D-NAC has the potential to salvage and treat liver injury with a broader therapeutic window.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app