Add like
Add dislike
Add to saved papers

Remote ischemic preconditioning-induced late cardioprotection: possible role of melatonin-mitoKATP-H2S signaling pathway.

PURPOSE: Remote ischemic preconditioning (RIPC) confers cardioprotection against ischemia reperfusion (IR) injury. However, the precise mechanisms involved in RIPC-induced cardioprotection are not fully explored. The present study was aimed to identify the role of melatonin in RIPC-induced late cardioprotective effects in rats and to explore the role of H2S, TNF-α and mitoKATP in melatonin-mediated effects in RIPC.

METHODS: Wistar rats were subjected to RIPC in which hind limb was subjected to four alternate cycles of ischemia and reperfusion of 5 min duration by using a neonatal blood pressure cuff. After 24 h of RIPC or ramelteon-induced pharmacological preconditioning, hearts were isolated and subjected to IR injury on the Langendorff apparatus.

RESULTS: RIPC and ramelteon preconditioning protected the hearts from IR injury and it was assessed by a decrease in LDH-1, cTnT and increase in left ventricular developed pressure (LVDP). RIPC increased the melatonin levels (in plasma), H2S (in heart) and decreased TNF-α levels. The effects of RIPC were abolished in the presence of melatonin receptor blocker (luzindole), ganglionic blocker (hexamethonium) and mitochondrial KATP blocker (5-hydroxydecanoic acid).

CONCLUSIONS: RIPC produce delayed cardioprotection against IR injury through the activation of neuronal pathway, which may increase the plasma melatonin levels to activate the cardioprotective signaling pathway involving the opening of mitochondrial KATP channels, decrease in TNF-α production and increase in H2S levels. Ramelteon-induced pharmacological preconditioning may also activate the cardioprotective signaling pathway involving the opening of mitochondrial KATP channels, decrease in TNF-α production and increase in H2S levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app