Add like
Add dislike
Add to saved papers

Staphylococcus aureus biofilm properties and chronic rhinosinusitis severity scores correlate positively with total CD4+ T-cell frequencies and inversely with its Th1, Th17 and regulatory cell frequencies.

Immunology 2023 May 17
Chronic rhinosinusitis (CRS) represents chronic inflammation of the sinus mucosa characterised by dysfunction of the sinuses' natural defence mechanisms and induction of different inflammatory pathways ranging from a Th1 to a Th2 predominant polarisation. Recalcitrant CRS is associated with Staphylococcus aureus dominant mucosal biofilms; however, S. aureus colonisation of the sinonasal mucosa has also been observed in healthy individuals challenging the significance of S. aureus in CRS pathogenesis. We aimed to investigate the relationship between CRS key inflammatory markers, S. aureus biofilm properties/virulence genes and the severity of the disease. Tissue samples were collected during endoscopic sinus surgery from the ethmoid sinuses of CRS patients with (CRSwNP) and without (CRSsNP) nasal polyps and controls (n = 59). CD3+ T-cell subset frequencies and key inflammatory markers of CD4+ helper T cells were determined using FACS analysis. Sinonasal S. aureus clinical isolates were isolated (n = 26), sequenced and grown into biofilm in vitro, followed by determining their properties, including metabolic activity, biomass, colony-forming units and exoprotein production. Disease severity was assessed using Lund-Mackay radiologic scores, Lund-Kennedy endoscopic scores and SNOT22 quality of life scores. Our results showed that S. aureus biofilm properties and CRS severity scores correlated positively with total CD4+ T-cell frequencies but looking into CD4+ T-cell subsets showed an inverse correlation with Th1 and Th17 cell frequencies. CD4+ T-cell frequencies were higher in patients harbouring lukF.PV-positive S. aureus while its regulatory and Th17 cell subset frequencies were lower in patients carrying sea- and sarT/U-positive S. aureus. Recalcitrant CRS is characterised by increased S. aureus biofilm properties in relation to increased total CD4+ helper T-cell frequencies and reduced frequencies of its Th1, Th17 and regulatory T-cell subsets. These findings offer insights into the pathophysiology of CRS and could lead to the development of more targeted therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app