Add like
Add dislike
Add to saved papers

Distinct association between chronic Epstein-Barr virus infection and T cell compartments from pediatric heart, kidney, and liver transplant recipients.

Chronic Epstein-Barr virus (EBV) infection after pediatric organ transplantation (Tx) accounts for significant morbidity and mortality. The risk of complications, such as posttransplant lymphoproliferative disorders, in high viral load (HVL) carriers is the highest in heart Tx recipients. However, the immunologic signatures of such a risk have been insufficiently defined. Here, we assessed the phenotypic, functional, and transcriptomic profiles of peripheral blood CD8+ /CD4+ T cells, including EBV-specific T cells, in 77 pediatric heart, kidney, and liver Tx recipients and established the relationship between memory differentiation and progression toward exhaustion. Unlike kidney and liver HVL carriers, heart HVL carriers displayed distinct CD8+ T cells with (1) up-regulation of interleukin-21R, (2) decreased naive phenotype and altered memory differentiation, (3) accumulation of terminally exhausted (TEX PD-1+ T-bet- Eomes+ ) and decrease of functional precursors of exhausted (TPEX PD-1int T-bet+ ) effector subsets, and (4) transcriptomic signatures supporting the phenotypic changes. In addition, CD4+ T cells from heart HVL carriers displayed similar changes in naive and memory subsets, elevated Th1 follicular helper cells, and plasma interleukin-21, suggesting an alternative inflammatory mechanism that governs T cell responses in heart Tx recipients. These results may explain the different incidences of EBV complications and may help improve the risk stratification and clinical management of different types of Tx recipients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app