Add like
Add dislike
Add to saved papers

A single-atom cobalt integrated flexible sensor for simultaneous detection of dihydroxybenzene isomers.

Nanoscale 2023 May 11
Simultaneous detection of dihydroxybenzene isomers including hydroquinone (HQ), catechol (CC), and resorcinol (RS) is significant for water quality control as they are highly toxic and often coexist. However, it is a great challenge to realize their accurate and simultaneous detection due to their similarity in structure and properties. Herein, an electrochemical flexible strip with single-atom cobalt (SA-Co/NG) was constructed through high-resolution electrohydrodynamic (EHD) printing for dihydroxybenzene isomer's simultaneous detection. Results showed that the provided SA-Co/NG strip exhibited excellent sensing performance with reliable repeatability, reproducibility, long-term stability, and flexibility. Linear ranges of 0.50-31 745 μM, 0.50-5909 μM, and 0.50-153.5 μM were achieved for HQ, CC, and RS, respectively, with a detection limit of 0.164 μM. Based on the experimental data, the mechanism concerning SA-Co/NG catalytic activity towards HQ can be deduced, starting from the combination of Co* and OH- in water, followed by the formation of Co-OH-dihydroxybenzene, and finally leading to O-H bond dissociation to generate benzoquinone. As for CC or RS, pyridinic N or CO synergistic with a single Co atom catalyzes their oxidation. Besides, the printed flexible SA-Co/NG strip further demonstrates the accurate and simultaneous detection of HQ, CC, and RS in textile wastewater, proposing a powerful practical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app