Add like
Add dislike
Add to saved papers

Subarctic-scale transport of 134 Cs to ocean surface off northeastern Japan in 2020.

Scientific Reports 2023 May 10
We studied the spatiotemporal variations in 134 Cs, 137 Cs, and 228 Ra concentrations at the sea surface off southeastern Hokkaido, Japan (off-Doto region) from 2018 to 2022 using low-background γ-spectrometry. The 134 Cs concentrations in the off-Doto region, decay-corrected to the date of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, exhibited wide lateral variation each year (e.g., 0.7-1.1 mBq/L in 2020). By studying the 228 Ra concentrations and salinity, this variation was explained based on the current mixing patterns. Furthermore, the 134 Cs concentrations in the waters highly affected by the Oyashio Current (OYC) gradually increased from 2018 to 2020, and subsequently decreased in 2022. This implies that the water mass maximally contaminated with 134 Cs was transported back to the side of the Japanese islands 10 years after the FDNPP accident along with counter-clockwise currents (e.g., the OYC) in the northern North Pacific Ocean. The 134 Cs concentrations in the OYC-affected waters in the off-Doto region in 2020 were ~ 1/6 times those in the 134 Cs-enriched core of waters off the western American Coast in 2015, which can be ascribed to dilution via spatial dispersion during subarctic current circulation. Overall, we elucidated the ocean-scale subarctic current systems in the northwestern North Pacific Ocean, including water circulation timespans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app