Add like
Add dislike
Add to saved papers

Reliability of a Novel Automated Ultrasound Technology for Body Composition Assessment and Comparisons with Dual Energy X-Ray Absorptiometry.

Body composition tools vary in reliability, portability, and accessibility. The purpose of this study was to evaluate test-retest reliability of MuscleSound® (MS) and dual-energy x-ray absorptiometry (DXA) for both two compartment (region) and three compartment (tissue) models. A secondary aim was to compare body composition values produced by both devices. Fifty participants ( n = 25 male, n = 25 female) aged 18-39 years completed two body composition assessments, twice in a single session. Participants arrived at the lab after a 12-hour fast. DXA required participants to lay supine for 10-15 minutes during the scanning process. Thereafter, MS was utilized to measure subcutaneous adipose tissue thickness at seven sites: chest, subscapula, triceps, axilla, suprailium, abdomen, and mid-thigh. MS automatically estimated body composition utilizing a modified Jackson-Pollock equation and the Siri equation within the software. The sequence of assessments was then repeated. Statistical analysis included paired T-tests with Pearson correlations, intraclass correlation coefficients (ICC), and least significant change (LSC). Both methods were strongly reliable (ICCMS = .997, ICCDXA-region = .999, ICCDXA-tissue = .999). MS and DXA-region body fat percentages were significantly different (mean difference (%): 2.60 ± 1.32, p < .001) but highly correlated ( r = .928, p < .001). Notably, the mean difference was within DXA-region's calculated least significant change of 3.24%. MS is reliable for assessing body fat percentage in young and middle-aged adults and operators can utilize MS to collect body composition data in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app