Add like
Add dislike
Add to saved papers

Bioinspired Super Thermal Insulating, Strong and Low Carbon Cement Aerogel for Building Envelope.

The energy crisis has arisen as the most pressing concern and top priority for policymakers, with buildings accounting for over 40% of global energy consumption. Currently, single-function envelopes cannot satisfy energy efficiency for next-generation buildings. Designing buildings with high mechanical robustness, thermal insulation properties, and more functionalities has attracted worldwide attention. Further optimization based on bioinspired design and material efficiency improvement has been adopted as effective approaches to achieve satisfactory performance. Herein, inspired by the strong and porous cuttlefish bone, a cement aerogel through self-assembly of calcium aluminum silicate hydrate nanoparticles (C-A-S-H, a major component in cement) in a polymeric solution as a building envelop is developed. The as-synthesized cement aerogel demonstrates ultrahigh mechanical performance in terms of stiffness (315.65 MPa) and toughness (14.68 MJ m-3 ). Specifically, the highly porous microstructure with multiscale pores inside the cement aerogel greatly inhibits heat transfer, therefore achieving ultralow thermal conductivity (0.025 W m-1 K-1 ). Additionally, the inorganic C-A-S-H nanoparticles in cement aerogel form a barrier against fire for good fire retardancy (limit oxygen index, LOI ≈ 46.26%, UL94-V0). The versatile cement aerogel featuring high mechanical robustness, remarkable thermal insulation, light weight, and fire retardancy is a promising candidate for practical building applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app