Add like
Add dislike
Add to saved papers

Programmed cell death 10 increased blood-brain barrier permeability through HMGB1/TLR4 mediated downregulation of endothelial ZO-1 in glioblastoma.

Cellular Signalling 2023 April 18
Dysfunction of blood brain barrier (BBB) contributes to the development of peritumoral edema (PTE) and GBM progression. Programmed cell death 10 (PDCD10) exerts various influence on cancers, especially in glioblastoma (GBM). We previously found that PDCD10 expression was positively correlated with PTE extent in GBM. Thus, the present study aims to investigate the emerging role of PDCD10 in regulating BBB permeability in GBM. Here we found that in vitro indirect co-culture of ECs with Pdcd10-overexpressed GL261 cells resulted in a significant increase of FITC-Dextran (MW, 4000) leakage by reducing endothelial zonula occluden-1 (ZO-1) and Claudin-5 expression in ECs respectively. Overexpression of Pdcd10 in GBM cells (GL261) triggered an increase of soluble high mobility group box 1 (HMGB1) release, which in turn activated endothelial toll like receptor 4 (TLR4) and downstream NF-κB, Erk1/2 and Akt signaling in ECs through a paracrine manner. Moreover, Pdcd10-overexpressed GL261 cells facilitated a formation of abnormal vasculature and increased the BBB permeability in vivo. Our present study demonstrates that upregulation of PDCD10 in GBM triggered HMGB1/TLR4 signaling in ECs and significantly decreased endothelial ZO-1 expression, which in turn dominantly increased BBB permeability and contributed to tumor progression in GBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app