Add like
Add dislike
Add to saved papers

Molecular HLA mismatching for prediction of primary humoral alloimmunity and graft function deterioration in paediatric kidney transplantation.

INTRODUCTION: Rejection remains the main cause of allograft failure in paediatric kidney transplantation and is driven by donor-recipient HLA mismatching. Modern computational algorithms enable assessment of HLA mismatch immunogenicity at the molecular level (molecular-mismatch, molMM). Whilst molMM has been shown to correlate with alloimmune outcomes, evidence demonstrating improved prediction performance against traditional antigen mismatching (antMM) is lacking.

METHODS: We analysed 177 patients from the CERTAIN registry (median follow-up 4.5 years). molMM scores included Amino-Acid-Mismatch-Score (AAMS), Electrostatic-Mismatch-Score (EMS3D) and netMHCIIpan (netMHC1k: peptide binding affinity ≤1000 nM; netMHC: binding affinity ≤500 nM plus rank <2%). We stratified patients into high/low-risk groups based on risk models of DSA development.

RESULTS: Donor-specific HLA antibodies (DSA) predominantly targeted the highest scoring molMM donor antigen within each HLA locus. MolMM scores offered superior discrimination versus antMM in predicting de novo DSA for all HLA loci; the EMS3D algorithm had particularly consistent performance (area under the receiver operating characteristic curve (AUC) >0.7 for all HLA loci vs. 0.52-0.70 for antMM). ABMR (but not TCMR) was associated with HLA-DQ molMM scores (AAMS, EMS3D and netMHC). Patients with high-risk HLA-DQ molMM had increased risk of graft function deterioration (50% reduction in baseline eGFR (eGFR50), adjusted HR: 3.5, 95% CI 1.6-8.2 high vs. low EMS3D). Multivariable modelling of the eGFR50 outcome using EMS3D HLA-DQ stratification showed better discrimination (AUC EMS3D vs. antMM at 2 years: 0.81 vs. 0.77, at 4.5 years: 0.72 vs. 0.64) and stratified more patients into the low-risk group, compared to traditional antMM.

CONCLUSION: Molecular mismatching was superior to antigen mismatching in predicting humoral alloimmunity. Molecular HLA-DQ mismatching appears to be a significant prognostic factor for graft function deterioration in paediatric kidney transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app