Add like
Add dislike
Add to saved papers

Low-Intensity Pulsed Ultrasound Neuromodulation of a Rodent's Spinal Cord Suppresses Motor Evoked Potentials.

OBJECTIVE: Here we investigate the ability of low-intensity ultrasound (LIUS) applied to the spinal cord to modulate the transmission of motor signals.

METHODS: Male adult Sprague-Dawley rats (n = 10, 250-300 g, 15 weeks old) were used in this study. Anesthesia was initially induced with 2% isoflurane carried by oxygen at 4 L/min via a nose cone. Cranial, upper extremity, and lower extremity electrodes were placed. A thoracic laminectomy was performed to expose the spinal cord at the T11 and T12 vertebral levels. A LIUS transducer was coupled to the exposed spinal cord, and motor evoked potentials (MEPs) were acquired each minute for either 5- or 10-minutes of sonication. Following the sonication period, the ultrasound was turned off and post-sonication MEPs were acquired for an additional 5 minutes.

RESULTS: Hindlimb MEP amplitude significantly decreased during sonication in both the 5- (p<0.001) and 10-min (p = 0.004) cohorts with a corresponding gradual recovery to baseline. Forelimb MEP amplitude did not demonstrate any statistically significant changes during sonication in either the 5- (p = 0.46) or 10-min (p = 0.80) trials.

CONCLUSION: LIUS applied to the spinal cord suppresses MEP signals caudal to the site of sonication, with recovery of MEPs to baseline after sonication.

SIGNIFICANCE: LIUS can suppress motor signals in the spinal cord and may be useful in treating movement disorders driven by excessive excitation of spinal neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app