Add like
Add dislike
Add to saved papers

Achieving higher hierarchical structures by cooperative assembly of tripeptides with reverse sequences.

Nanoscale 2023 April 6
Hierarchical self-assembly based on peptides in nature is a multi-component interaction process, providing a broad platform for various bionanotechnological applications. However, the study of controlling the hierarchical structure transformation via the cooperation rules of different sequences is still rarely reported. Herein, we report a novel strategy of achieving higher hierarchical structures through cooperative self-assembly of hydrophobic tripeptides with reverse sequences. We unexpectedly found that Nap-FVY and its reverse sequence Nap-YVF self-assembled into nanospheres, respectively, while their mixture formed nanofibers, obviously exhibiting a low-to-high hierarchical structure transformation. Further, this phenomenon was demonstrated by the other two collocations. The cooperation of Nap-VYF and Nap-FYV afforded the transformation from nanofibers to twisted nanoribbons, and the cooperation of Nap-VFY and Nap-YFV realized the transformation from nanoribbons to nanotubes. The reason may be that the cooperative systems in the anti-parallel β-sheet conformation created more hydrogen bond interactions and in-register π-π stacking, promoting a more compact molecular arrangement. This work provides a handy approach for controlled hierarchical assembly and the development of various functional bionanomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app