Add like
Add dislike
Add to saved papers

A Hybrid Stacked Restricted Boltzmann Machine with Sobel Directional Patterns for Melanoma Prediction in Colored Skin Images.

Diagnostics 2023 March 15
Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell multiplication. Melanoma detection is of the utmost significance in clinical practice because of the atypical border structure and the numerous types of tissue it can involve. The identification of melanoma is still a challenging process for color images, despite the fact that numerous approaches have been proposed in the research that has been done. In this research, we present a comprehensive system for the efficient and precise classification of skin lesions. The framework includes preprocessing, segmentation, feature extraction, and classification modules. Preprocessing with DullRazor eliminates skin-imaging hair artifacts. Next, Fully Connected Neural Network (FCNN) semantic segmentation extracts precise and obvious Regions of Interest (ROIs). We then extract relevant skin image features from ROIs using an enhanced Sobel Directional Pattern (SDP). For skin image analysis, Sobel Directional Pattern outperforms ABCD. Finally, a stacked Restricted Boltzmann Machine (RBM) classifies skin ROIs. Stacked RBMs accurately classify skin melanoma. The experiments have been conducted on five datasets: Pedro Hispano Hospital (PH2), International Skin Imaging Collaboration (ISIC 2016), ISIC 2017, Dermnet, and DermIS, and achieved an accuracy of 99.8%, 96.5%, 95.5%, 87.9%, and 97.6%, respectively. The results show that a stack of Restricted Boltzmann Machines is superior for categorizing skin cancer types using the proposed innovative SDP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app