Add like
Add dislike
Add to saved papers

Development and evaluation of a novel panel containing 188 microhaplotypes for 2nd-degree kinship testing in the Hebei Han population.

Distant kinship identification is one of the critical problems in forensic genetics. As a new type of genetic marker defined and discussed in the last decade, the microhaplotype (MH) has drawn much attention in such identification owing to its specific advantages to traditional short tandem repeat (STR) or single nucleotide polymorphism (SNP) markers. In this study, MH markers were screened step by step from the 1000 Genomes Project database, and a novel multiplex panel containing 188 MHs (in which 181 are reported the first time, while 1 was reported in a previous study and the other 6 have partial overlaps with known markers) was constructed for application in 2nd- and 3rd-degree kinship identification. Along with the construction, a novel MH nomenclature was proposed, in which the SNP position information they contained was taken into account to eliminate the possibility that the same locus was named differently interlaboratory. After a series of evaluations, the panel was shown to have good sequencing accuracy, high sensitivity, species specificity, and resistance to anti-PCR inhibitors or degradation. Population data of the 188 MHs were calculated based on the genetic information of 221 unrelated Hebei Han individuals, and the effective number of alleles (Ae) ranged from 2.0925 to 8.2634 (with an average of 2.9267). For the whole system, the cumulative matching probability (CMP), the cumulative power of exclusion in paternity testing of duos (CPEduo) and that of trios (CPEtrio) reached 2.8422 × 10-137 , 1-1.3109 × 10-21 , and 1-2.8975 × 10-39 , respectively, indicating that this panel was satisfactory for individual identification and paternity testing. Then, the efficiency of the 188 MHs in 2nd- and 3rd-degree kinship testing was studied based on 30 extended families consisting of 179 2nd-degree and 121 3rd-degree relatives, as well as simulations of 0.5 million pairs of those two kinships. The results showed that clear opinions would be given in 83.36% of 2nd-degree identifications with a false rate less than 10-5 , when the confirming and excluding thresholds of cumulative likelihood ratio (CLR) were set as 104 and 10-4 , respectively. This panel is still not sufficient to solve the problem of 3rd-degree kinship identification alone, and approximately 300 or 870 MH loci would be needed in 2nd- or 3rd-degree kinship identification, respectively, to achieve a system efficiency not less than 0.99 with such a threshold set; such necessary numbers would be used only as a reference in further research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app