Add like
Add dislike
Add to saved papers

Ginsenoside Rb3 upregulates sarcoplasmic reticulum Ca 2+ -ATPase expression and improves the contractility of cardiomyocytes by inhibiting the NF-κB pathway.

A causal relationship between ginsenoside Rb3 (G-Rb3) and improved inflammation and cardiac function has not been established. To determine which specific signaling pathways were involved in G-Rb3 improvement of inflammation and myocardial function. In vivo, we found that G-Rb3 decreased the levels of both nuclear factor κB (NF-κB p65) and CD45, an inflammatory marker. G-Rb3 also enhanced key proteins of the contraction unit (cardiac troponin protein I (cTnI) and α-actinin) to improve cardiac function. G-Rb3 inhibited NF-κB p65 nuclear translocation in vitro, as verified by western blot and IF. When NF-κB p65 was overexpressed, a decrease in cyclic nucleotide phosphodiesterase 3B (PDE3B) and SERCA2a expression, while no statistical significance was observed in the expressions of cAMP, PKA, and calcium/calmodulin-dependent protein kinase type II (CaMKⅡ) in each group. The NF-κB p65 plasmid blocked the SERCA2a promoter, as verified by the luciferase reporter system, and G-Rb3 truncated the NF-κB p65 block on the SERCA2a promoter. qPCR was also used to confirm that G-Rb3 increased the mRNA of SERCA2a. In conclusion, we confirmed that the mechanisms of G-Rb3 on ventricular systolic dysfunction causing inflammation are not via the cAMP/PKA pathway, but via suppressing the blockage of NF-κB p65 on the SERCA2a promoter and increasing the SERCA2a expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app