Add like
Add dislike
Add to saved papers

WDR45 mutation dysregulates iron homeostasis by promoting the chaperone-mediated autophagic degradation of ferritin heavy chain in an ER stress/p38 dependent mechanism.

Ferritin is the main iron storage protein that plays a pivotal role in the regulation of iron homeostasis. Mutations in the autophagy protein WD repeat domain 45 (WDR45) that lead to iron overload is associated with the human β-propeller protein-associated neurodegeneration (BPAN). Previous studies have demonstrated that ferritin was decreased in WDR45 deficient cells, but the mechanism remains unclear. In this study, we have demonstrated that the ferritin heavy chain (FTH) could be degraded via chaperone-mediated autophagy (CMA) in ER stress/p38-dependent pathway. In HeLa cells, inducing the ER stress activated CMA, therefore facilitated the degradation of FTH, and increased the content of Fe2+ . However, the increased CMA activity and Fe2+ as well as the decreased FTH by ER stress inducer were restored by pre-treatment with p38 inhibitor. Overexpression of a mutant WDR45 activated CMA thus promoted the degradation of FTH. Furthermore, inhibition of ER stress/p38 pathway resulted in reduced activity of CMA, which consequently elevated the protein level of FTH but reduced the Fe2+ level. Our results revealed that WDR45 mutation dysregulates iron homeostasis by activating CMA, and promotes FTH degradation through ER stress/p38 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app