Add like
Add dislike
Add to saved papers

Ex-situ oxygenated hypothermic machine perfusion in donation after circulatory death heart transplantation following either direct procurement or in-situ normothermic regional perfusion.

BACKGROUND: Heart transplantation in donation after circulatory death (DCD) relies on warm perfusion using either in situ normothermic regional perfusion (NRP) or ex situ normothermic machine perfusion. In this study, we explore an alternative: oxygenated hypothermic machine perfusion (HMP) using a novel clinically applicable perfusion system, which is compared to NRP with static cold storage (SCS).

METHODS: In a porcine model, a DCD setting was simulated, followed by either (1) NRP and SCS (2) NRP and HMP with the XVIVO Heart preservation system or (3) direct procurement (DPP) and HMP. After preservation, heart transplantation (HTX) was performed. After weaning from cardiopulmonary bypass (CPB), biventricular function was assessed by admittance and Swan-Ganz catheters.

RESULTS: Only transplanted hearts in the HMP groups showed significantly increased biventricular contractility (end-systole elastance) 2 hour post-CPB (left ventricle absolute change: NRP HMP: +1.8 ± 0.56, p = 0.047, DPP HMP: +1.5 ± 0.43, p = 0.045 and NRP SCS: +0.97 ± 0.47 mmHg/ml, p = 0.21; right ventricle absolute change: NRP HMP: +0.50 ± 0.12, p = 0.025, DPP HMP: +0.82 ± 0.23, p = 0.039 and NRP SCS: +0.28 ± 0.26, p = 0.52) while receiving significantly less dobutamine to maintain a cardiac output >4l/min compared to SCS. Diastolic function was preserved in all groups. Post-HTX, both HMP groups showed significantly less increments in plasma troponin T compared to SCS.

CONCLUSION: In DCD HTX, increased biventricular contractility post-HTX was only observed in hearts preserved with HMP. In addition, the need for inotropic support and signs of myocardial damage were lower in the HMP groups. DCD HTX can be successfully performed using DPP followed by preservation with HMP in a preclinical setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app