Add like
Add dislike
Add to saved papers

The role of rhoA/rho-kinase and PKC in the inhibitory effect of L-cysteine/H 2 S pathway on the carbachol-mediated contraction of mouse bladder smooth muscle.

We investigated the role of RhoA/Rho-kinase (ROCK) and PKC in the inhibitory effect of L-cysteine/hydrogen sulfide (H2 S) pathway on the carbachol-mediated contraction of mouse bladder smooth muscle. Carbachol (10-8 -10-4  M) induced a concentration-dependent contraction in bladder tissues. L-cysteine (H2 S precursor; 10-2  M) and exogenous H2 S (NaHS; 10-3  M) reduced the contractions evoked by carbachol by ~ 49 and ~ 53%, respectively, relative to control. The inhibitory effect of L-cysteine on contractions to carbachol was reversed by 10-2  M PAG (~ 40%) and 10-3  M AOAA (~ 55%), cystathionine-gamma-lyase (CSE) and cystathionine-β-synthase (CBS) inhibitor, respectively. Y-27632 (10-6  M) and GF 109203X (10-6  M), a specific ROCK and PKC inhibitor, respectively, reduced contractions evoked by carbachol (~ 18 and ~ 24% respectively), and the inhibitory effect of Y-27632 and GF 109203X on contractions was reversed by PAG (~ 29 and ~ 19%, respectively) but not by AOAA. Also, Y-27632 and GF 109203X reduced the inhibitory responses of L-cysteine on the carbachol-induced contractions (~ 38 and ~ 52% respectively), and PAG abolished the inhibitory effect of L-cysteine on the contractions in the presence of Y-27632 (~ 38%). Also, the protein expressions of CSE, CBS, and 3-MST enzymes responsible for endogenous H2 S synthesis were detected by Western blot method. H2 S level was increased by L-cysteine, Y-27632, and GF 109203X (from 0.12 ± 0.02 to 0.47 ± 0.13, 0.26 ± 0.03, and 0.23 ± 0.06 nmol/mg respectively), and this augmentation in H2 S level decreased with PAG (0.17 ± 0.02, 0.15 ± 0.03, and 0.07 ± 0.04 nmol/mg respectively). Furthermore, L-cysteine and NaHS reduced carbachol-induced ROCK-1, pMYPT1, and pMLC20 levels. Inhibitory effects of L-cysteine on ROCK-1, pMYPT1, and pMLC20 levels, but not of NaHS, were reversed by PAG. These results suggest that there is an interaction between L-cysteine/H2 S and RhoA/ROCK pathway via inhibition of ROCK-1, pMYPT1, and pMLC20, and the inhibition of RhoA/ROCK and/or PKC signal pathway may be mediated by the CSE-generated H2 S in mouse bladder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app