Add like
Add dislike
Add to saved papers

Enhanced sciatic nerve regeneration with fibrin scaffold containing human endometrial stem cells and insulin encapsulated chitosan particles: An in vivo study.

Injury 2023 Februrary 27
BACKGROUND: Based on recent advances in tissue engineering and stem cell therapy in nervous system diseases treatments, this study aimed to investigate sciatic nerve regeneration using human endometrial stem cells (hEnSCs) encapsulated fibrin gel containing chitosan nanoparticle loaded by insulin (Ins-CPs). Stem cells and also Insulin (Ins), which is a strong signaling molecule in peripheral nerve regeneration, play an important role in neural tissue engineering.

METHODS: The fibrin hydrogel scaffold containing insulin loaded chitosan particles was synthesized and characterized. Release profiles of insulin from hydrogel was determined through UV-visible spectroscopy. Also, human endometrial stem cells encapsulated in hydrogel and its cell biocompatibility were assigned. Furthermore, the sciatic nerve crush injury was carried out and prepared fibrin gel was injected at the crush injury site by an 18-gage needle. Eight and twelve weeks later, the recovery of motor and sensory function and histopathological evaluation were assessed.

RESULTS: The in vitro experiments showed that the insulin can promote hEnSCs proliferation within a certain concentration range. Animals' treatment confirmed that developed fibrin gel containing Ins-CPs and hEnSCs significantly improves motor function and sensory recovery. Hematoxylin and Eosin (H&E) images provided from cross-sectional and, longitudinal-sections of the harvested regenerative nerve showed that regenerative nerve fibers had been formed and accompanied with new blood vessels in the fibrin/insulin/hEnSCs group.

CONCLUSION: Our results demonstrated that the prepared hydrogel scaffolds containing insulin nanoparticles and hEnSCs could be considered as a potential biomaterial aimed at regeneration of sciatic nerves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app