Add like
Add dislike
Add to saved papers

Effects of oleic acid and/or exercise on diet-induced thermogenesis and obesity in rats: involvement of beige adipocyte differentiation and macrophage M1 inhibition.

BACKGROUND AND PURPOSE: Obesity is a public health problem and the existence of beige adipocytes has got interested as a potential therapeutic involvement for obesity and obesity-associated diseases. Adipose tissue M1 macrophage inhibition, also, has a vital role in obesity via down-regulating adipose tissue inflammation and the use of natural compounds such as oleic acid with exercise has been proposed. The present study aimed to evaluate the possible effects of oleic acid and exercise on diet-induced thermogenesis and obesity in rats.

EXPERIMENTAL APPROACH: Wister albino rats were categorized into six groups. Group I: normal control, group II: oleic acid group (9.8 mg/kg; orally), group III: high-fat diet (HFD), group IV: HFD plus oleic acid, group V: HFD plus exercise training, group VI: HFD plus exercise training and oleic acid.

FINDINGS/RESULTS: Oleic acid administration and/or exercise significantly decreased body weight, TG, and cholesterol, as well as elevated HDL levels. Furthermore, oleic acid administration and/or exercise reduced serum MDA, TNF-α, and IL-6 levels, elevated the levels of GSH and irisin, increased the expression of UCP1, CD137, and CD206, and reduced CD11c expression.

CONCLUSION AND IMPLICATIONS: Oleic acid supplementation and/or exercise could be used as therapeutic agents for treating obesity via its antioxidant and anti-inflammatory activities, stimulation of beige adipocyte differentiation, and macrophage M1 inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app