Add like
Add dislike
Add to saved papers

Biomechanical comparison of different implants for PIP arthrodesis.

BACKGROUND: Surgical correction of hammertoe deformities with arthrodesis of the proximal interphalangeal joint (PIP) is one of the most frequent forefoot procedures. Recently, new intramedullary fixation devices for PIP arthrodesis have been introduced. The aim of this study was to compare a newly developed absorbable intramedullary implant made of magnesium (mm.PIP), an already available intramedullary implant made of titanium (PipTree), and the classical Kirschner-wire (K-wire).

METHODS: The three intramedullary devices (mm.PIP, PipTree, and K-wire) for PIP arthrodesis were compared. A classical arthrodesis of the PIP joint was performed on fifty-four composite synthetic bone pairs. After arthrodesis, torsional load, weight-bearing and cyclic load tests were performed, and stability of the synthetic bone pairs was analyzed. Statistischer Vergleich - wie?

RESULTS: The mm.PIP was the most torsion resistant (mm.PIP vs. PipTree and K-wire, p < 0.001). The PipTree showed the best overall stability during cyclic weight-bearing simulation (PipTree vs. mm.PIP and K-wire, p < 0.001). K-wire demonstrated the highest breaking loads during bending tests (K-wire vs. mm-PIP and PipTree, p < 0.001).

CONCLUSION: Biomechanical properties of two new intramedullar implants, the bioresorbable mm.PIP made of magnesium and the PipTree made of titanium, were found to be comparable to the biomechanical properties of a K-wire which is commonly used for this procedure. Future work should be directed towards a clinical assessment of the bioabsorbable fixation devices for hammertoe procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app