Add like
Add dislike
Add to saved papers

Design, synthesis, antimicrobial screening and molecular modeling of novel 6,7 dimethylquinoxalin-2(1H)-one and thiazole derivatives targeting DNA gyrase enzyme.

Bioorganic Chemistry 2023 Februrary 22
New 6,7-dimethylquinoxalin-2(1H)-one and hydrazineylidene thiazol-4-one derivatives were synthesized, and evaluated for their in vitro antimicrobial activity. The obtained results revealed marked antimicrobial potential against four bacterial, and two fungal strains. Both 6,7-dimethyl-3-(2-(4-nitrophenyl)-2-oxoethyl)quinoxalin-2(1H)-one (4d), and 2-(2-(9H-fluoren-9-ylidene)hydrazineyl)-5-(2-(p-tolyl)hydrazineylidene)thiazol-4(5H)-one (11b) displayed significant antibacterial and antifungal activities having MIC ranges (1.98-15.6 mg/mL) and (1.98-3.9 mg/mL) compared to Tetracycline and Amphotericin B as standard drugs. In addition, they showed noticeable inhibitory activity against DNA gyrase enzyme. Interestingly the thiazole derivative (11b) showed marked inhibitory activity against DNA gyrase with IC50  = 7.82 ± 0.45 μM better than that of ciprofloxacin. The time-kill kinetics profile of the most active compounds against S. aureus and E. coli microorganisms displayed both concentration dependent and time dependent reduction in the number of viable cells. Furthermore, molecular docking study of both compounds in the DNA gyrase binding site was performed, showing agreement with the in vitro inhibitory activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app