Add like
Add dislike
Add to saved papers

A new application of continuous sample drop flow microextraction using octanoic acid as a green extraction solvent for the determination of antibiotic drugs in urine samples.

In this study, octanoic acid (OA) was used as an extraction solvent for the pre-concentration and determination of three antibiotic drugs (levofloxacin, metronidazole, and tinidazole) in urine samples. To extract the antibiotic drugs, a green solvent was used as the extraction solvent in the continuous sample drop flow microextraction method, followed by a high-performance liquid chromatography photodiode array detector. According to the findings, the present study offers an environmentally friendly analytical method with a high capacity for the microextraction of the antibiotic drugs at very low concentrations. The calculated detection limits were 6.0-10.0 µg/L and the linear range was found between 20 and 780 µg/L. The proposed method showed excellent repeatability with the RSD values ranging from 2.8 to 5.5%. The relative recoveries were between 79.0 and 92.0% in the urine samples with spiked levels of 40.0-100.0 µg/L for metronidazole and tinidazole, and 100.0-200.0 μg/L for levofloxacin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app