Add like
Add dislike
Add to saved papers

Artificial intelligence-enabled screening strategy for drug repurposing in monoclonal gammopathy of undetermined significance.

Blood Cancer Journal 2023 Februrary 18
Monoclonal gammopathy of undetermined significance (MGUS) is a benign hematological condition with the potential to progress to malignant conditions including multiple myeloma and Waldenstrom macroglobulinemia. Medications that modify progression risk have yet to be identified. To investigate, we leveraged machine-learning and electronic health record (EHR) data to screen for drug repurposing candidates. We extracted clinical and laboratory data from a manually curated MGUS database, containing 16,752 MGUS patients diagnosed from January 1, 2000 through December 31, 2021, prospectively maintained at Mayo Clinic. We merged this with comorbidity and medication data from the EHR. Medications were mapped to 21 drug classes of interest. The XGBoost module was then used to train a primary Cox survival model; sensitivity analyses were also performed limiting the study group to those with non-IgM MGUS and those with M-spikes >0.3 g/dl. The impact of explanatory features was quantified as hazard ratios after generating distributions using bootstrapping. Medication data were available for 12,253 patients; those without medications data were excluded. Our model achieved a good fit of the data with inverse probability of censoring weights concordance index of 0.883. The presence of multivitamins, immunosuppression, non-coronary NSAIDS, proton pump inhibitors, vitamin D supplementation, opioids, statins and beta-blockers were associated with significantly lower hazard ratio for MGUS progression in our primary model; multivitamins and non-coronary NSAIDs remained significant across both sensitivity analyses. This work could inform subsequent prospective studies, or similar studies in other disease states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app